
A

Major Project

On

AUTOMATING PACMAN WITH DEEP Q-

LEARNING USING PYGAME

(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

 N.SAI KUMAR (187R1A05A1)

SK.AFROZ (187R1A05B5)

U.VARSHA (187R1A0572)

Under the Guidance of

G.VIJAY KUMAR

(Assistant Professor)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICALCAMPS UGC AUTONOMOUS

(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi)

Recognized Under Section 2(f) & 12(B) of the UGCAct.1956

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2018-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “AUTOMATING PACMAN WITH

DEEP Q-LEARNING USING PYGAME” being submitted by N.SAI KUMAR

(187R1A05A1),SK.AFROZ(187R1A05B5) & U.VARSHA(187R1A0572) in partial

fulfilment of the requirements for the award of the degree of B.Tech in Computer

Science and Engineering to the Jawaharlal Nehru Technological University Hyderabad,

is a record of Bonafede work carried out by him/her under our guidance and supervision

during the year 2021-22.

The results embodied in this thesis have not been submitted to any other

University or Institute for the award of any degree or diploma.

G.Vijay Kumar Dr. A. Raji Reddy

Assistant Professor

INTERNAL GUIDE

DIRECTOR

Dr. K.Srujan Raju

HOD

EXTERNAL EXAMINER

Submitted for viva voice Examination held on

ACKNOWLEGDEMENT

 Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express our

gratitude to the people who have been instrumental in the successful completion of this

project.

 We take this opportunity to express my profound gratitude and deep regard to

my guide G.Vijay Kumar, Assistant Professor for his exemplary guidance, monitoring

and constant encouragement through out the project work. The blessing, help and

guidance given by him shall carry us a long way in the journey of life on which we are

about to embark. We also take this opportunity to express a deep sense of gratitude to

Project Review Committee (PRC) Mr. J. Narasimha Rao, Dr. T. S. Mastan Rao,

Mr. A. Uday Kiran, Mr. A. Kiran Kumar, Mrs. G. Latha for their cordial support,

valuable information and guidance, which helped us in completing this task through

various stages.

 We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer

Science and Engineering for providing encouragement and support for completing this

project successfully.

 We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout

the course of this project. We also express our sincere gratitude to Sri. Ch. Gopal

Reddy, Chairman for providing excellent infrastructure and a nice atmosphere

throughout the course of this project.

The guidance and support received from all the members of CMR Technical

Campus who contributed to the completion of the project. We are grateful for their

constant support and help. Finally, we would like to take this opportunity to thank our

family for their constant encouragement, without which this assignment would not be

completed. We sincerely acknowledge and thank all those who gave support directly

and indirectly in the completion of this project.

N.SAIKUMAR(187R1A05A1)

SK.AFROZ (187R1A05B5)

U.VARSHA (187R1A0572)

i
CMRTC

ABSTRACT

 We apply various reinforcement learning methods on the classical game.

Pacman, we study and compare Q-learning, approximate Q-learning and Deep Q-

learning based on the total rewards and win-rate, While Q-learning has been proved to

be quite effective on smallGrid, it becomes inefficient to find the optimal policy in large

grid-layouts, In approximate Q-learning, we handcraft ‘intelligent’ features to feed into

the game. The main purpose of this project is to investigate the effectiveness of Deep

Q-learning based on the context of the Pacman game having Q-learning and

Approximate Q-learning as baselines. Reinforcement learning creates its own, ever-

shifting dataset, both because the network generates its own target values and because

the action choices of the network directly impact which states it will reach in its

environment and therefore what it will have to learn about.

ii
CMRTC

LIST OF FIGURES

FIGURE NO FIGURE NAME PAGE NO

Figure 3.1 Project Architecture 7

Figure 3.2 Use case diagram 8

Figure 3.3 Sequence diagram 9

Figure 3.4 Class diagram 10

Figure 3.5

Figure 5.1

Figure 5.2

Activity diagram

Medium Map

Automatic Game Play of Pacman

11

17

18

TABLE OF CONTENTS

ABSTRACT i

LIST OF FIGURES ii

1. INTRODUCTION

1.1 PROJECT SCOPE 1

1.2 PROJECT PURPOSE 1

1.3 PROJECT FEATURES 1

2. SYSTEM ANALYSIS

2.1 PROBLEM DEFINITION 2

2.2 EXISTING SYSTEM 2

2.2.1 LIMITATIONS OF THE EXISTING SYSTEM 3

2.3 PROPOSED SYSTEM 3

2.3.1 ADVANTAGES OF PROPOSED SYSTEM 3

2.4 FEASIBILITY STUDY 4

2.4.1 ECONOMIC FESIBILITY 4

2.4.2 TECHNICAL FEASIBILITY 5

2.4.3 BEHAVIOURAL FEASIBILITY 5

2.5 HARDWARE & SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS 6

2.5.2 SOFTWARE REQUIREMENTS 6

3. ARCHITECTURE

3.1 PROJECT ARCHITECTURE 7

DESCRIPTION 7

3.2 USE CASE DIAGRAM 8

3.3 SEQUENCE DIAGRAM 9

3.4 CLASS DIAGRAM 10

3.5 ACTIVITY DIAGRAM 11

4. IMPLEMENTATION

 4.1 SAMPLE CODE 12-16

5. RESULTS 17-18

6. TESTING

6.1 INTRODUCTION TO TESTING 19

6.2 TYPES OF TESTING 19

6.2.1 UNIT TESTING 19

6.2.2INTEGRATION TESTING 19

6.2.3FUNTIONAL TESTING 20

 7. CONCLUSION 21

 8. BIBILOGRAPHY

 8.1 REFERENCES 22

 8.2 GITHUB LINK 22

1.INTRODUCTION

Automating Pacman with deep Q-learning using Pygame

CMRTC 1

1.INTRODUCTION

1.1 PROJECT SCOPE

 Machine learning has become a popular research area, combining all sorts of

algorithms for all kinds of tasks. But what they have in common no matter the task is

that all machine learning tasks require some sort of training data. This means that with

every new parameter in the environment trained upon, the set of states in the

environment grows exponentially. The pacman will first train automatically and play

the game with wins and losses. After completion of the training it will play efficiently.

1.2 PROJECT PURPOSE

 Machine learning is an application of artificial intelligence (AI) that provides

systems the ability to automatically learn and improve from experience without being

explicitly programmed. Machine learning focuses on the development of computer

programs that can access data and use it to learn for themselves. We have to create a

small machine learning application and show the how to perform that.

1.3 PROJECT FEATURES

 Reinforcement learning originated from the idea of learning something by

interacting with its environment. But before such an experiment can even designed, the

task experimented on has to full the Markov Property. We define our Deep Q-learning

neural network. This is a CNN that takes in-game screen images and outputs the

probabilities of each of the actions, or Q-values, in the Ms-Pacman game space. To

acquire a tensor of probabilities, we do not include any activation function in our final

layer.

2.SYSTEM ANALYSIS

Automating Pacman with deep Q-learning using Pygame

CMRTC 2

2.SYSTEM ANALYSIS

System Analysis is the important phase in the system development process. The

System is studied to the minute details and analyzed. The system analyst plays an

important role of an interrogator and dwells deep into the working of the present system.

In analysis, a detailed study of these operations performed by the system and their

relationships within and outside the system is done. A key question considered here is,

“what must be done to solve the problem?” The system is viewed as a whole and the

inputs to the system are identified. Once analysis is completed the analyst has a firm

understanding of what is to become.

2.1 PROBLEM DEFINITION

The automating pacman is an AI application in that we have to train the model

for playing automatically. In which we are using the reinforcement algorithm and the

deep q neural networks. But the actual problem is it takes more time for training and

learning the basics of the game.

2.2 EXISTING SYSTEM

 The Player guides the titular pacman through a maze to eat all pacman dots in

the maze .when all the dots are eaten pacman is taken to the next stage of the game.Four

ghosts, Blinky, Pinky, Inky and Clyde roam the maze, trying to catch Pac-Man- if

a ghost touches him, a life is lost. When all lives have been lost, the game ends. Near

the corners of the maze are four larger, flashing dots known as Power Pellets, provide

Pac-Man with the temporary ability to eat the ghosts. The ghosts turn deep blue, reverse

direction, and move slower when Pac-Man eats one. When a ghost is eaten, its eyes

return to the ghost home where it is regenerated in its normal color. Blue ghosts flash

white before they become dangerous again.The amount of time the ghosts remain

vulnerable varies from one round to the next, but the time period generally becomes

shorter as the game progresses. In later stages, the ghosts do not change colors at all,

but they still reverse direction when a power pellet is eaten.

https://pacman.fandom.com/wiki/Blinky
https://pacman.fandom.com/wiki/Pinky
https://pacman.fandom.com/wiki/Inky
https://pacman.fandom.com/wiki/Clyde

Automating Pacman with deep Q-learning using Pygame

CMRTC 3

2.2.1 LIMITATIONS OF EXISTING SYSTEM

➢ Overfitting of the data may occur.

➢ Accuracy is low due to the number of testcases.

➢ It takes many number of testcases for AI to learn playing pacman .

2.3 PROPOSED SYSTEM

DeepMind published the first version of its Deep Q-Network (DQN), a

computer program capable of human-level performance on a number of classic Atari

2600 games. Just like a human, the algorithm played based on its vision of the screen.

Starting from scratch, it discovered gameplay strategies that let it meet (and in many

cases, exceed) human benchmarks. In the years since, researchers have made a number

of improvements that super-charge performance and solve games faster than ever

before. We’ve been working to implement these advancements in Keras — the open

source, highly accessible machine learning framework — and in this post, we’ll walk

through the details of how they work and how they can be used to master Ms. Pac-man.

2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

➢ AI based user interface.

➢ One of the major advantages is without human interaction it will play automatically.

Automating Pacman with deep Q-learning using Pygame

CMRTC 4

2.4 FEASIBILITY STUDY

The aim of the Automating pacman with deep Q-learning using pygame project

is the how the machine learning application runs in a real world. First we have to train

the model and that model learn and perform the action. In order to give the reader a

better understanding of the problem ahead and how to accomplish the task of building

an self-learning agent, this thesis offers the basic knowledge needed to understand the

principles of reinforcement learning and deep learning used, the implemented features,

the architecture built and the results of experiments that helped further enhance the

network performance.

2.4.1 ECONOMIC FEASIBILITY

The developing system must be justified by cost and benefit. Criteria to ensure

that effort is concentrated on project, which will give best, return at the earliest. One of

the factors, which affect the development of a new system, is the cost it would require.

The following are some of the important financial questions asked during preliminary

investigation:

• The costs conduct a full system investigation.

• The cost of the hardware and software.

• The benefits in the form of reduced costs or fewer costly errors.

Since the system is developed as part of project work, there is no manual cost to spend

for the proposed system. Also all the resources are already available, it give an indication

of the system is economically possible for development.

Automating Pacman with deep Q-learning using Pygame

CMRTC 5

2.4.2 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand on

the available technical resources. The developed system must have a modest

requirement, as only minimal or null changes are required for implementing this

system..

2.4.3 BEHAVIOURAL FEASIBILITY

This includes the following questions:

• Is there sufficient support for the users?

• Will the proposed system cause harm?

The project would be beneficial because it satisfies the objectives when

developed and installed. All behavioural aspects are considered carefully and

conclude that the project is behaviourally feasible.

Automating Pacman with deep Q-learning using Pygame

CMRTC 6

2.5 HARDWARE & SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS

Hardware interfaces specifies the logical characteristics of each interface

between the software product and the hardware components of the system. The

following are some hardware requirements.

➢ System : Intel Processor i3/i5

➢ OS : Windows 7,8,10

➢ Input Devices : Keyboard, Mouse

➢ Ram : 4GB

2.5.2 SOFTWARE REQUIREMENTS

 The following are some software requirements.

➢ Operating system : Windows 7,8,10

➢ Coding Language : Python

➢ Tool : Visual Studio code(VS),Anaconda

➢ Modules : tensorflow,gymAI,pygame

3.ARCHITECTURE

Automating Pacman with deep Q-learning using Pygame

CMRTC 7

3.ARCHITECTURE

3.1 PROJECT ARCHITECTURE

This project architecture shows the procedure followed for how the process of

execute the game.

Figure 3.1: Project Architecture of Automating pacman game

DESCRIPTION

The above diagram represents the architecture of pacman game.

 The Pacman framework of the UC Berkeley’s introductory artificial intelligence

course, CS 188 is used as a foundation for this experiment. For it a framework that has

a good setting for learning the basics of reinforcement learning. It has a predefined

environment, with states that hold all relevant game data and a pre-deend reward signal

(,though it is not in-use in these experiment). And an agent interface, that makes it easy

to implement new agents, just needing the user to keep some name conventions on the

agent’s name and the agents to have a function getAction(self, state) returning an action

to the model.

Automating Pacman with deep Q-learning using Pygame

CMRTC 8

3.2 USE CASE DIAGRAM

 Use-case diagrams model the behavior of a system and help to capture the

requirements of the system. Use-case diagrams describe the high-level functions and

scope of a system. Use-case diagrams illustrate and define the context and requirements

of either an entire system or the important parts of the system.

Figure 3.2 Use case diagram for Automating pacman with deep q-learning using pygame

Automating Pacman with deep Q-learning using Pygame

CMRTC 9

3.3 SEQUENCE DIAGRAM

Sequence Diagrams are interaction diagrams that detail how operations are

carried out. They capture the interaction between objects in the context of a

collaboration. Sequence Diagrams are time focus and they show the order of the

interaction visually by using the vertical axis of the diagram to represent time what

messages are sent and when.

Figure 3.3 Sequence diagram for Automating pacman with deep q-learning using pygame

Automating Pacman with deep Q-learning using Pygame

CMRTC 10

3.4 CLASS DIAGRAM

Class diagrams are the main building block in object-oriented modeling. In the

example, a class called “loan account” is depicted. Classes in class diagrams are

represented by boxes that are partitioned into three: The top partition contains the name

of the class. The middle part contains the class's attributes.

Figure 3.4 Class diagram for Automating pacman with deep q-learning using pygame

Automating Pacman with deep Q-learning using Pygame

CMRTC 11

3.5 ACTIVITY DIAGRAM

Activity diagram is basically a flowchart to represent the flow from one activity

to another activity. The activity can be described as an operation of the system. The

control flow is drawn from one operation to another. This flow can be sequential,

branched, or concurrent.

Figure 3.4 Activity diagram for Automating pacman with deep q-learning using pygame

4.IMPLEMENTATION

 Automating Pacman with Deep q-learning using Pygame

CMRTC 12

4.IMPLEMENTATION

4.1 SAMPLE CODE

import numpy as np

import random

import util

import time

import sys

Pacman game

from pacman import Directions

from game import Agent

import game

Replay memory

from collections import deque

Neural nets

import tensorflow as tf

from DQN import *

params = {

 'load_file':'./saves/model-checkpoint_600497_1394',

 'save_file':'checkpoint',

 'save_interval' : 10000,

 'train_start': 5000, # Episodes before training starts

 'batch_size': 32, # Replay memory batch size

 'mem_size': 100000, # Replay memory size

 'discount': 0.95, # Discount rate (gamma value)

 'lr': .0002, # Learning reaGHte

 # 'rms_decay': 0.99, # RMS Prop decay (switched to adam)

 # 'rms_eps': 1e-6, # RMS Prop epsilon (switched to adam)

 'eps': 1.0, # Epsilon start value

 'eps_final': 0.1, # Epsilon end value

 'eps_step': 10000 # Epsilon steps between start and end (linear)

}

 Automating Pacman with Deep q-learning using Pygame

CMRTC 13

class PacmanDQN(game.Agent):

 def __init__(self, args):

 print("Initialise DQN Agent")

 self.params = params

 self.params['width'] = args['width']

 self.params['height'] = args['height']

 self.params['num_training'] = args['numTraining']

 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.1)

 self.sess = tf.Session(config = tf.ConfigProto(gpu_options = gpu_options))

 self.qnet = DQN(self.params)

 self.general_record_time = time.strftime("%a_%d_%b_%Y_%H_%M_%S",

time.localtime())

 # Q and cost

 self.Q_global = []

 self.cost_disp = 0

 # Stats

 self.cnt = self.qnet.sess.run(self.qnet.global_step)

 self.local_cnt = 0

 self.numeps = 0

 self.last_score = 0

 self.s = time.time()

 self.last_reward = 0.

 self.replay_mem = deque()

 self.last_scores = deque()

def get_value(self, direction):

 if direction == Directions.NORTH:

 return 0.

 elif direction == Directions.EAST:

 return 1.

 elif direction == Directions.SOUTH:

 return 2.

 else:

 return 3.

 def get_direction(self, value):

 if value == 0.:

 return Directions.NORTH

 elif value == 1.:

 return Directions.EAST

 elif value == 2.:

 return Directions.SOUTH

 else:

 return Directions.WEST

 Automating Pacman with Deep q-learning using Pygame

CMRTC 14

def observation_step(self, state):

 if self.last_action is not None:

 # Process current experience state

 self.last_state = np.copy(self.current_state)

 self.current_state = self.getStateMatrices(state)

 # Process current experience reward

 self.current_score = state.getScore()

 reward = self.current_score - self.last_score

 self.last_score = self.current_score

 if reward > 20:

 self.last_reward = 50. # Eat ghost (Yum! Yum!)

 elif reward > 0:

 self.last_reward = 10. # Eat food (Yum!)

 elif reward < -10:

 self.last_reward = -500. # Get eaten (Ouch!) -500

 self.won = False

 elif reward < 0:

 self.last_reward = -1. # Punish time (Pff..)

 if(self.terminal and self.won):

 self.last_reward = 100.

 self.ep_rew += self.last_reward

 # Store last experience into memory

 experience = (self.last_state, float(self.last_reward), self.last_action,

self.current_state, self.terminal)

 self.replay_mem.append(experience)

 if len(self.replay_mem) > self.params['mem_size']:

 self.replay_mem.popleft()

 # Save model

 if(params['save_file']):

 if self.local_cnt > self.params['train_start'] and self.local_cnt %

self.params['save_interval'] == 0:

 self.qnet.save_ckpt('saves/model-' + params['save_file'] + "_" +

str(self.cnt) + '_' + str(self.numeps))

 print('Model saved')

 # Train

 self.train()

 # Next

 self.local_cnt += 1

 self.frame += 1

 self.params['eps'] = max(self.params['eps_final'],

 1.00 - float(self.cnt)/ float(self.params['eps_step']))

 Automating Pacman with Deep q-learning using Pygame

CMRTC 15

if self.params['load_file'] is not None:

self.global_step=tf.Variable(int(self.params['load_file'].split('_')[1]),name='global_ste

p', trainable=False)

 else:

 self.global_step = tf.Variable(0, name='global_step', trainable=False)

 # self.optim =

tf.train.RMSPropOptimizer(self.params['lr'],self.params['rms_decay'],0.0,self.params['

rms_eps']).minimize(self.cost,global_step=self.global_step)

 self.optim = tf.train.AdamOptimizer(self.params['lr']).minimize(self.cost,

global_step=self.global_step)

 self.saver = tf.train.Saver(max_to_keep=0)

 self.sess.run(tf.global_variables_initializer())

 if self.params['load_file'] is not None:

 print('Loading checkpoint...')

 self.saver.restore(self.sess,self.params['load_file'])

 def train(self,bat_s,bat_a,bat_t,bat_n,bat_r):

 feed_dict={self.x: bat_n, self.q_t: np.zeros(bat_n.shape[0]), self.actions: bat_a,

self.terminals:bat_t, self.rewards: bat_r}

 q_t = self.sess.run(self.y,feed_dict=feed_dict)

 q_t = np.amax(q_t, axis=1)

 feed_dict={self.x: bat_s, self.q_t: q_t, self.actions: bat_a, self.terminals:bat_t,

self.rewards: bat_r}

 _,cnt,cost = self.sess.run([self.optim,

self.global_step,self.cost],feed_dict=feed_dict)

 return cnt, cost

 def save_ckpt(self,filename):

 self.saver.save(self.sess, filename)

def registerInitialState(self, state): # inspects the starting state

 # Reset reward

 self.last_score = 0

 self.current_score = 0

 self.last_reward = 0.

 self.ep_rew = 0

 # Reset state

 self.last_state = None

 Automating Pacman with Deep q-learning using Pygame

CMRTC 16

 self.current_state = self.getStateMatrices(state)

 # Reset actions

 self.last_action = None

 # Reset vars

 self.terminal = None

 self.won = True

 self.Q_global = []

 self.delay = 0

 # Next

 self.frame = 0

 self.numeps += 1

 def getAction(self, state):

 move = self.getMove(state)

 # Stop moving when not legal

 legal = state.getLegalActions(0)

 if move not in legal:

 move = Directions.STOP

 return move

5.RESULTS

 Automating Pacman with Deep q-learning using Pygame

17
CMRTC

5.RESULTS

Figure 5.1: Medium Map

 Automating Pacman with Deep q-learning using Pygame

18
CMRTC

Figure 5.2: Automatic Game Play of Pacman

6.TESTING

Automating Pacman with deep Q-learning using Pygame

19
CMRTC

6.TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to

discovery conceivable fault or weakness in a work product. It provides a way to check

the functionality of components, subassemblies, assemblies and/or a finished product.

It is the process of exercising software with the intent of ensuring that the Software

system meets its requirements and user expectations and does not fail in an

unacceptable manner. There are various types of test. Each test type addresses a specific

testing requirement.

6.2 TYPES OF TESTING

6.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal

program logic is functioning properly, and that program inputs produce valid outputs.

All decision branches and internal code flow should be validated. It is the testing of

individual software units of the application .it is done after the completion of an

individual unit before integration. This is a structural testing, that relies on knowledge

of its construction and is invasive. Unit tests perform basic tests at component level and

test a specific business process, application , and/or system configuration. Unit tests

ensure that each unique path of a business process performs accurately to the

documented specifications and contains clearly defined inputs and expected results.

6.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to

determine if they actually run as one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields. Integration tests demonstrate

that although the components were individually satisfaction, as shown by successfully

unit testing, the combination of components is correct and consistent. Integration testing

is specifically aimed at exposing the problems that arise from the combination of

components.

Automating Pacman with deep Q-learning using Pygame

20
CMRTC

6.2.3 FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system

documentation, and user manuals.

Functional testing is cantered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures : interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to identify

Business process flows; data fields, predefined processes.

7.CONCLUSION

Automating Pacman with deep Q-learning using Pygame

CMRTC 21

7.CONCLUSION

 In this instance these components were linear function approximation and deep

learning modules. Though the second approach was pursued mostly, since the focus

laid on deep learning as an alternative for classic regression algorithms. First linear

function approximation agents stagnated pretty fast in learning and performed poorly,

therefore got dismissed in the early stages. This indicates that linear function

approximation wasn’t refined enough for this particular task. I used a simple feed

forward network, mostly utilized for regression and classification tasks, to estimate the

beneficially of possible feature combinations for estimating which action given the

current state might be the best. The first attempted artificial network agent, trained on

data sets of feature combinations mapped to received rewards, averagely outscored the

best linear function approximation agent’s score by triple the points.

8. BIBILOGRAPHY

Automating Pacman with deep Q-learning using Pygame

CMRTC 22

8.BIBILOGRAPHY

8.1 REFERENCES

1. https://towardsdatascience.com/automating-pac-man-with-deep-q-learning-an-

 implementation-in-tensorflow-ca08e9891d9c

2. https://en.wikipedia.org/wiki/Pygame

3. https://pythonrepo.com/tag/unity-game

4. https://www.reddit.com/r/learnmachinelearning/comments/eehhml/auto

 -mating_pacman_with_deep_qlearning.

8.2 GITHUB LINK

 https://github.com/nandyalasaikumar/PACMAN.git

https://towardsdatascience.com/automating-pac-man-with-deep-q-learning-an-
https://en.wikipedia.org/wiki/Pygame
https://pythonrepo.com/tag/unity-game

